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Abstract 

In this  article  we apply  the  modified  extended  tanh-function method  to  find  the  exact traveling wave 

solutions  of the  generalized  KdV-mKdV  equation  with  any  order  nonlinear terms.  This method 

presents a wider applicability for handling many other nonlinear evolution equations in mathematical 

physics. 
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INTRODUCTION 

The investigation of the traveling wave solutions of nonlinear partial differential equations plays an important 

role in the study of nonlinear physical phenomena.   Nonlinear  wave  phenomena appears  in various  scientific  

and  engineering  fields,  such as fluid  mechanics,  plasma  physics,  optical fibers, biology, solid state physics, 

chemical kinematics, chemical physics and geochemistry. Nonlinear wave phenomena of dispersion, dissipation, 

diffusion, reaction and convection are very important in nonlinear wave equations.  In recent years, new exact 

solutions may help us to find new phenomena.  A variety  of powerful methods,  such as the inverse  scattering  

method  [1, 13], the bilinear  transformation  [7], the tanh-sech  method  [10, 11], the extended  tanh method  

[10], the homogeneous balance method [5] and the Jacobi elliptic function method [15] were used to develop 

nonlinear dispersive and dissipative problems.  The pioneer work of Malfliet in [10, 11] introduced the powerful 

tanh method for reliable treatment of the nonlinear wave equations. The useful tanh method is widely used by 

many authors  such as [17–20] and  the references  therein. Later, the extended tanh method, developed by 

Wazwaz [21, 22], is a direct and effective algebraic method for handling nonlinear equations. Zayed et al [23] 

have used this method to find the exact solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations 

and the (1+1)-dimensional Jaulent-Miodek (JM) equations. 

 

The objective of this paper is to apply the modified extended tanh-function method to find the exact traveling 

wave solutions of the generalized KdV-mKdV  equation with higher-order nonlinear terms [24] in the form 
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2( ) 0,p p

t x xxxu u u u u                                     (1) 

 

where , ,    are constants and 0p  . Li [25] has discussed Eq.  (1) using the ( / )G G -expansion  method 

and found its exact solutions, while Zayed et al [26] have applied the two variable ( / ,1/ )G G G -expansion 

method and determined the exact solutions  of the combined  KdV-mKdV  equation.   The  paper  is organized  

as follows:  In Sec. 2, the modified extended tanh-function method is presented.  In Sec. 3, we use the modified 

extended tanh-function method to obtain exact solutions of the generalized KdV-mKdV equation with any- 

order nonlinear terms.  Sec. 4, some conclusions are given. 

DESCRIPTION OF THE MODIFIED EXTENDED TANH-FUNCTION METHOD  

Consider the following nonlinear evolution equation 

 

                                                                      ( , , , , , ,...) 0,t x tt xt xxF u u u u u u                                                        

(2) 

 

Where F   is a polynomial in ( , )u x t and  its partial derivatives.  In the following we give the main steps of 

this method. 

 

Step 1. We use the wave transformation 

 

                                                                          ( , ) ( ),u x t u     ,x ct                                                          

(3) 

 

where c is a constant, to reduce Eq. (2) to the ODE: 

 

                                                                               
2( , , , ,...) 0,P u cu u c u                                                          

(4) 

 

 

where P is a polynomial  in ( )u  and its total derivatives, such that ' /d d  

. 

Step 2. We suppose that the solution of Eq. (4) has the form 

 

                                                                 
0

1

( ) ( ),
m

i i

i i

i

u a a b   



                                                                 

(5) 

 

where  ,i ia b   are constants to be determined, such that 0ma  or 0mb  and    satisfies the Riccati 

equation 

                                                                              
2 ,b                                                                                      

(6) 

where b is a constant.  Eq. (6) admits several types of solutions: 

 

 (i) If 0b  , then 

tanh( ),b b      or coth( ),b b      

 (ii) If 0b  , then 

tan( ),b b   or cot( ),b b    

 (iii) If 0b  , then 
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.


   

Step 3. We determine the positive integer m in (5) by balancing  the highest order derivatives and the nonlinear  

terms in Eq.  (4).  In some nonlinear  equations the balance  number  m   is not a positive integer.  In this case, 

we make the following transformations: 

 

                                                                         ( ) ( ),

q

pu v                                                                                  

(7) 

 

 

  

where 
q

m
p

 is a fraction in the lowest terms.  Substituting (7) into (4) to get a new equation in the new 

function 

( )v   with a positive integer balance  number. 

 

Step  4.  We substitute (5)  along with  Eq. (6)  into  Eq. (4)  and  collecting  all the terms  of the same power   

, 0, 1, 2,...i i    and  equating them to zero, we obtain a system of algebraic equations, which can be 

solved by Maple to get the values of 
ia , 

ib , and .c  

 

Step  5.  Substituting  these  values  and  the solutions  of Eq. (6)  into  (5)  we have  the exact solutions of Eq.  

(2). 

 

APPLICATIONS 
 

In  this  section,  we will apply  the method  described  in  Sec.2 to find  the exact  traveling  wave solutions  of 

the generalized  KdV-mKdV  equation  with  any- order  nonlinear  terms  (1).  To this end, we use the wave 

transformation (3) to reduce Eq. (1) to the following ODE: 

 

                                                  
2( ) 0.p pu u u u cu                                                                   (8) 

By balancing u with 
2pu u  in Eq. (8),  we get 

1
.m

p
  According to step. 3, we make the transformation 

                                                                               

1

( ) ( ),pu v                                                                         

(9) 

  

 

where ( )v  is a new function of    . Substituting  (9) into Eq. (8), we get the new ODE  

 

                
2 2 2 2 2 2 3( ) 3 (1 ) (2 3 1) 0.p v v v v c p v v p p vv v p p v                                    

(10) 

 

Balancing  
2v v with 

4v v  in Eq.(10)  gives 1m  . Consequently, we get the solution 

 

                                                                       
1

0 1 1( ) ,v a a b                                                                      

(11) 

where 
0 1 1, ,a a b  are constants to be determined, such that 

1 0a  or 
1 0b  . Now, substituting  (11)  along  

with  equation  (6)  into  (10)  , collecting  the coefficients  of  
i   and setting them to zero, we get a system of 

algebraic equations for 
0 1 1, ,a a b  and c . Using the Maple, we get the following results. 
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Case 1. 
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2
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4 ( 2) ( 1)

p p p
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p p
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 
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2 2

2

(2 1)
,

4 ( 1)( 2)

p p
b

p p








 
 

                                              

3 2 2 2

2

5 8 4 2
.

( 1)( 2)

p p p p
c

p p

     



    


 
                                       

(12) 

 

Form (11), and (12), we deduce the traveling wave solutions of Eq.(1)  as follows:  

For 0,b   we obtain the solution 

 

                                                      
1

(2 1)
( ) 1 coth ,

2 ( 2)

pp
u b

p


 



  
   

 
                                             

(13) 

For 0,b   we obtain the solution 

 

                                                       
1

(2 1)
( ) 1 cot ,

2 ( 2)

pp
u i b

p


 



  
  

 
                                                

(14) 

 

where 

3 2 2 2

2

5 8 4 2
.

( 1)( 2)

p p p p
x t

p p

     




    
 

 
  

 

Case 2. 
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2
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( 1)( 2)

p p p p
c

p p
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

 
                                          

(15) 

 

In this case, we deduce the traveling wave solutions of Eq.(1)  as follows:  

For 0,b  we obtain the solution 

                                                  
1

(2 1)
( ) 1 tanh ,

2 ( 2)

pp
u b

p


 



  
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 
                                                    

(16) 

 

For  0,b   we obtain the solution 

                                                   
1

(2 1)
( ) 1 tan ,

2 ( 2)

pp
u i b

p


 



  
  
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(17) 

where 

3 2 2 2

2

5 8 4 2
.

( 1)( 2)

p p p p
x t

p p
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 

 
 



International Journal of Environmental Engineering Science and Technology Research                                   

Vol. 1, No. 8, August 2013, PP: 165 -170, ISSN: 2326-3113 (Online)                                                         

Available online at www.ijestr.org 

 

169 

 

  

Case 3. 
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(18) 

 

In this case, we deduce the traveling wave solutions of Eq.(1)  as follows: 

 For 0,b   we obtain the solution 

                              
1

(2 1) (2 1)
( ) tanh coth ,

2 ( 2) 4 ( 2)

pp p
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For  0,b   we obtain the solution 

                                   
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( ) tan cot ,

2 ( 2) 4 ( 2)

pp p i
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where 
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 
 

 

CONCLUSIONS 

 
In this article, the modified extended tanh-function method was applied to give the traveling wave solutions of 

the generalized KdV-mKdV equation with any order nonlinear terms.  On comparing our solutions (13)- (20) 

with that obtained in [25], we have many new solutions using the proposed method of this paper  which are 

equivalent in some cases and not in other cases. The performance of this  method  is reliable  and  effective  and  

can  be applied  to many  other  nonlinear  evolution equations. Finally, we note that the method obtained in 

[21,22] is called the extended tanh-function method which is absolutely different from the proposed method 

used in the present article. 
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